

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

 A study of the Euclidean attack on RSA

ΦΛΩΡΙΑΣ ΠΑΠΑΔΟΠΟΥΛΟΣ (Α.Ε.Μ.: 874)

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΔΗΜΗΤΡΙΟΣ ΠΟΥΛΑΚΗΣ

ΘΕΣΣΑΛΟΝΙΚΗ 2023

Abstract

This study was made for an assignment of the class ”Cryptography” of my master’s program.
For the assignment, the paper ”An application of Euclidean algorithm in cryptanalysis of RSA”
[1], had to be studied, analyzed and represented in a more explanatory and student-friendly way.

This ”report” will consist of two chapters, one theoretical in which the main concepts of
the paper above will be represented thoroughly, and one more practical in which the EUCLID-
ATTACK algorithm (proposed in [1]) will be explained and implemented. Moreover, concerning
the implementation, it was done using Python and creating an executable program which this
”report” accompanies. This executable will be used in order to create some toy examples of
application of the algorithm.

Keywords: RSA, attack on RSA, small private exponent, Euclidean algorithm, EUCLID-
ATTACK

Contents

1 Theoretical survey 4
1.1 Introduction . 4
1.2 How it works . 5
1.3 Why it works . 6

1.3.1 Proof of Theorem 1 . 6
1.3.2 Equivalence with Wiener’s attack . 8

2 Algorithm and Implementation 9
2.1 EUCLID-ATTACK algorithm . 9
2.2 Experimental Results . 10

2.2.1 Example with a small private exponent 10
2.2.2 Example with a (very) large private exponent 11

3

Chapter 1

Theoretical survey

As mentioned before, in this chapter the theory behind the application of the Euclidean algorithm
on the cryptanalysis of RSA will be explained at length. But, before presenting the how and
the why it works, an introduction will be made, mentioning the results of some relative papers,
as well as the background and relative conditions under which the attack presented works.

1.1 Introduction

Firstly, we assume that the setup of the classic RSA cryptosystem is known to the reader but
mention it for completeness:
”Let p and q be two primes, > 2, of the same size (l(p) = l(q) = l) and set n = pq. We consider
the key space K = {k ∈ Z | 1 < k < ϕ(n) & gcd(k, ϕ(n))} of RSA and choose e, d ∈ K such that

ed ≡ 1 (modϕ(n)) (1.1)

Then, we define the public and private keys of RSA to be (n, e) and d, respectively. Moreover,
the encryption and decryption functions respectively are

Ee : Zn → Zn, x 7→ xemodn

Ed : Zn → Zn, x 7→ xdmodn”

It is apparent that the different values that e and d can get can affect RSA’s properties
considerably. For example, if e (or d) is chosen to be small then the encryption (respectively,
decryption) process can be faster and less space can be used in order to store the key. In fact,
one situation where the use of short exponents is particularly advantageous is when there is a
large difference in computing power and available space between two communicating devices,
e.g. a smart card and a computer. In this case, as we would like to not minimize the amount
of processes done in the smart card, a shorter exponent would be preferable. This sounds like a
good idea at first but in reality it is not due to the class of short exponent attacks on RSA.

The most known attack of this kind was first proposed in 1990, by Wiener [2], in a paper
where he utilizes an algorithm that used continued fractions to discover a short private key d,
in the case d < n1/4/3. More precisely, Wiener’s thinking starts from the equivalence relation
that connects e and d, and performs some calculations until he reaches the equation

e

pq
=

k

dg
(1− δ), where δ =

p+ q − 1− g
k

pq

with k and g being some integers we won’t explain further. We note that the e
pq consists entirely

of public information and is a close underestimate of k/dg, if δ is small enough. Wiener’s attack
then works by generating the continued fraction expansion of e/pq until its close underestimate
k/dg can be found using his continued fraction algorithm. This algorithm can be successful only

4

1.2. HOW IT WORKS

if δ is small enough, a condition which can be proved to be equivalent to d < n1/4/3. Finally,
about its computation speed, it can be proven that the overall time complexity of Wiener’s
attack is O((log n)3) bit operations.

Wiener’s attack has been generalized multiple times and extended so that d can be broken
for a few more bits in [3, 4]. Also, in [5], results from lattice theory were used to present a
variation of Wiener’s attack that can compute n in time O((log n)2). Moreover, there are other
heuristic attacks that use Coppersmith’s technique based on lattices to find d when d < n0.292.
More information on those can be found on [6, 7].

On the other hand, since, as we have seen, using a small secret exponent can be dangerous,
one may be tempted to use a (very) large d to speed up the process. Although this sounds
wrong when thinking about RSA being used in the positive representation (i.e., all values are
always positive), if the exponents are in the symmetric representation, the computational cost of
exponentiation can be substantially reduced by using small negative exponents (or equally very
large positive exponents). More precisely, if d is small then the cost of computing m−dmodn
is simply the computation cost of the exponentiation mdmodn, followed by a modn inversion.
In 2004, Hinek [8] proved that Wiener’s continued fraction attack can be extended to very large
private exponent RSA, with the following theorem:

Theorem. Let n be an RSA modulus with balanced primes1 and let d be a private exponent
satisfying

√
6(ϕ(n)−d) < n1/4. Given the public key (n, e), the private exponent can be recovered

in time polynomial in log2 n.

Moreover, he proved that if the attacks from [6, 7] work for all d < nδ, then the attacks work
also for δ > ϕ(n)− nδ.

Taking into consideration all of the above we will do an introduction of the Euclidean Attack
on RSA. Generally, it too works by utilising the relation equation for e and d, along with
Euclidean algorithm and some other computations to find the primes p and q. Although at first
it looks complicated, in reality the thought process behind it is the same as in Weiner’s attack:
start from a relation of known and unknown variables and use a tool, in this case the Euclidean
algorithm, along with the publicly known values e and n to find the solution. More precisely
though, the conditions required for this attack are

(i) The public exponent e has the same order of magnitude as n.

(ii) One of the integers k = (ed−1)
ϕ(n) and e− k has at most one-quarter as many bits as e.

About the first case of (ii), as k has at most one-quarter as many bits as e if and only if d
has at most one-quarter as many bits as n, we see that this hypothesis is equivalent to that of
Weiner’s. Similarly, the second case of (ii) can be compared to Hinek’s extension of Wiener’s
attack. Moreover, concerning its computation speed, the attack uses a deterministic algorithm
for computing the factorization of an RSA modulus n in ′((log n)2) bit operations.

1.2 How it works

Let p and q be two primes, > 2 of the same size (l(p) = l(q) = l)) and set n = pq. Consider
integers e, d ∈ (1, ϕ(n)) such that ed ≡ 1 (modϕ(n)). Then, as mentioned in the introduction,
(n, e) is the public key and d is the private key for an RSA cryptosystem. Also, we set a =
n+ 1mod e and ∆ = gcd(e, a).

It was mentioned before that the Euclidean algorithm will be used for this attack but never
on which integers. Those integers will be e and a (we remind that e¿a). Continuing, the extended
Euclidean algorithm will be used for e and a and its results will be denoted, as we will need
them when stating the main theorem of Poulakis’ paper:

1More on balanced primes can be found on [8], but for our interests it is merely a condition that doesn’t impose
on any of the results mentioned before.

5

1.3. WHY IT WORKS

We set r0 = e and r1 = a, then there are pairs of integers (qi, ri+1) (i = 1, . . . ,m) such that
rm = ∆, rm+1 = 0 and

ri−1 = riqi + ri−1, 0 < ri+1 < ri.

Furthermore, we define integers si and ti for i = 1, . . . ,m+ 1 as follows:

s0 = 1, s1 = 0 and t0 = 0, t1 = 1

and for i = 1, . . . ,m,

si+1 = si−1 − siqi and ti+1 = ti−1 − tiqi.

It can be proven [9] that those integers ti and si satisfy |ti| < e/ri−1, |si| < a/ri−1 and

esi + ati = ri (i = 0, . . . ,m+ 1).

Finally, we set µi = gcd(ti, ri), t
′
i = ti/µi and r′i = ri/µi (i = 0, . . . ,m + 1). The application of

the Euclidean algorithm on the cryptanalysis of RSA is based on the following theorem:

Theorem 1. Let e > n/c, where c is an integer ≥ 2 and k = (ed− 1)/ϕ(n). Let j be an index
such that rj is the largest remainder among them which are < e3/4. The results below follow:

(i) Suppose that k is ≤ e1/4/6
√
c. Then, we have ∆ < e3/4 and

k = |t′j |, p+ q = (a+ |t′j |−1)mod e.

(ii) Suppose that e− k is ≤ e1/4/6
√
c. Then, we have ∆ < e3/4 and

k = |t′j |, p+ q = (a+ (e− |t′j |)−1)mod e.

1.3 Why it works

In this section we will present the proof of Theorem 1 along with more analytic proof of the
comparable efficacy between Poulakis’s and Wiener’s approaches.

1.3.1 Proof of Theorem 1

As mentioned before, we will start by the modulo congruence that connects e and d:

ed ≡ 1 (modϕ(n)).

From it we deduce that there exists an integer k such that ed− kϕ(n) = 1. Using this equality
together with the fact that ϕ(n) = (p− 1)(q − 1) = pq − (p+ q) + 1 and n = pq yields:

ed− k(n− (p+ q) + 1)− 1 = 0,

from which we get:

k(n+ 1− (p+ q)) + 1 ≡ 0 (mod e).

Moreover, setting y0 = k and x0 = p+ q, we get:

1 + ay0 − x0y0 ≡ 0 (mod e).

Suppose that p < q. Then p2 < p ∗ q < n and thus p <
√
n. Further, since l(p) = l(q) = l,

we have:

2l−1 + 1 ≤ p < q ≤ 2l−1 + · · ·+ 1.

6

1.3. WHY IT WORKS

Thus, we get:

q − p ≤ 2l−1 + · · ·+ 1− (2l−1 + 1)

≤ 2l−2 + · · ·+ 2

< 2l−1 + 1

≤ p,

and hence, q < 2p. Therefore, we obtain x0 = p+ q < 3p < 3
√
n < 3

√
ce, from e > n/c.

Case (i).

We assume that y0 ≤ e1/4/6
√
c.

We suppose ∆ ≥ e3/4 and would like to prove the inverse by contradiction.
Firstly, since ∆ = gcd(e, a) we get:

1− x0y0 ≡ 0 (mod∆)

⇒∃λ ∈ Z s.t.: x0y0 − 1 = λ∆

Moreover, we have:

|x0y0 − 1| < 3
√
ce · e

1/4

6
√
c
− 1

< e3/4/2− 1

< e3/4

and thus
|x0y0 − 1| < e3/4 ≤ ∆

⇒−∆ < x0y0 − 1 < ∆

⇒−∆ < λ∆ < ∆

⇒λ = 0.

Hence, x0y0 = 1, whence we get x0 = y0 = 1, which is a contradiction.
Therefore, ∆ < e3/4.

Let now rj be the bigger remainder< e3/4, we have rj−1 > e3/4 and thus, |tj | < e/rj−1 < e1/4.
Furthermore, we have:

tj(1 + ay0 − x0y0) + sjey0 ≡ 0 (mod e)

⇒ tj + tjay0 − tjx0y0 + sjey0 ≡ 0 (mod e)

⇒ tj + (tja+ sje)y0 − tjx0y0 ≡ 0 (mod e)

⇒ tj + rjy0 − tjx0y0 ≡ 0 (mod e)

We set f(x, y) = tj + rjy − tjxy and would like to prove f(x0, y0) = 0. At first, from the
congruence above we have e|f(x0, y0), and secondly we have |f(x0, y0)| < e because:

|f(x0, y0)| < e1/4 + e3/4 · e
1/4

6
√
c
+ e1/4 · e

3/4

2

= e1/4 +
e

6
√
c
+

e

2

< e.

Hence, f(x0, y0) = 0and thus, by dividing with µj = gcd(tj , rj), we obtain:

t′j + r′jy0 − t′jx0y0 = 0

7

1.3. WHY IT WORKS

The above equality implies that t′j |r′jy0 ⇒ t′j |y0, since gcd(t′j , r
′
j) = 1. Moreover, we also get

y0|t′j . Hence, we have y0 = |t′j |. Using this in the starting congruence 1−ay0−x0y0 ≡ 0 (mod e)
yields

x0 = (a+ |t′j |−1)mod e

Case (ii).

We set z0 = −y0mod e and assume that z0 ≤ e1/4/6
√
c.

We suppose ∆ ≥ e3/4 and would like to prove the inverse by contradiction.
The proof is similar to the one in case (i), only having −z0 in the place of y0. This way we get:

1 + x0z0 ≡ 0 (mod∆)

⇒∃λ ∈ Z s.t.: x0z0 + 1 = λ∆

Moreover, we have |x0z0+1| < 1+ e3/4

2 < ∆ and thus we get x0z0+1 = 0, which is a contradiction.

Therefore, ∆ < e3/4.
Let now rj be the bigger remainder< e3/4, we have rj−1 > e3/4 and thus, |tj | < e/rj−1 < e1/4.

Furthermore, we have:

tj(1− az0 + x0z0)− sjez0 ≡ 0 (mod e)

⇒ tj − tjaz0 + tjx0z0 − sjez0 ≡ 0 (mod e)

⇒ tj − (tja+ sje)z0 + tjx0z0 ≡ 0 (mod e)

⇒ tj − rjz0 + tjx0z0 ≡ 0 (mod e)

We set f(x, y) = tj + rjy − tjxy and working similarly to before we finally get z0 = |t′j |.
Using this in the starting congruence 1− az0 + x0z0 ≡ 0 (mod e) yields

x0 = (a+ (e− |t′j |)−1)mod e,

which concludes the proof.

1.3.2 Equivalence with Wiener’s attack

Finally, we shall give the proof of the ”equivalence” between Poulakis’ and Wiener’s attacks:

Suppose that n/(c− 1) > e > n/c with c ≥ 2. Then we have:

d

k
=

ed

ek
=

kϕ(n) + 1

ek
<

ϕ(n)

e
+

1

ek
<

n− 1

e
+

1

ek
<

n

e
< c

Moreover, if we suppose k ≤ e1/4/6
√
c, then we get:

d < kc ≤
√
ce1/4

6
<

√
c

6

n1/4

(c− 1)3/4
.

Hence, for c = 10, we get d < n1/4/3.
On the other hand, supposing d < n1/4/3 and using ϕ(n) <

√
n
2 < n

2 we have:

k =
ed− 1

ϕ(n)
<

ed

ϕ(n)
<

2ed

n
<

2

c− 1
d <

2e1/4

3(c− 1)3/4
.

Hence, for c ≥ 19, we get k ≤ e1/4/6
√
c.

Therefore, we see that the approaches have comparable efficiencies. Moreover, we remind
that Wiener’s attack needs O((log n)3) bit operations while Poulakis’ attack needs O((log n)2).

8

Chapter 2

Algorithm and Implementation

In this chapter, we will describe the EUCLID-ATTACK, which is a deterministic algorithm which
uses the results of Theorem 1 in order to factorize n. Some remarks will be made concerning its
steps and its computation speed will be presented (and proved). After this, two toy examples
of use of the algorithm will be presented, one for each case of Theorem 1, whose intermediary
values and output we got from our program.

2.1 EUCLID-ATTACK algorithm

As mentioned in the original paper, Theorem 1 and its proof yield the design of a deterministic
algorithm that can efficiently compute the factorization of n. The algorithm, which was given
the name ”EUCLID-ATTACK”, is the following:

* EUCLID-ATTACK algorithm *

· Input: An RSA public key (n, e) with e > n/ c
· Output: The primes p and q (or FAIL)

1. Compute a = (n+ 1)mod e

2. Using the extended Euclidean algorithm for e and a, compute the biggest remainder
rj among them which are < e3/4, as well as the associated integers sj , tj such that
sje+ atj = rj .

3. Compute µj = gcd(tj , rj) and next t′j = tj / µj .

4. Compute β1 = (a + |t′j |−1)mod e and next the solutions u1 and v1 of equation

x2−β1x+n = 0. If u1 and v1 are positive integers, then output (u1, v1). Otherwise,
go to the next step.

5. Compute β2 = (a+ (e− |t′j |)−1)mod e and next the solutions u2 and v2 of equation

x2−β2x+n = 0. If u2 and v2 are positive integers, then output (u2, v2). Otherwise,
output FAIL.

Theorem 2. Let e > n/c, where c is an integer ≥ 2 and k = (ed− 1)/ϕ(n). Suppose that k or
e− k is ≤ e1/4/6

√
c. Then, the above algorithm computes correctly the primes p and q in time

O((log e)2) bit operations.

Proof. In order to compute the time complexity of the algorithm we account the following:

- The extended Euclidean algorithm used on the 2nd step needs O((log e)2) bit operations.

- The computation of the gcd(tj , rj) = µj and t′j on the 3rd step also needs the use of the

Euclidean algorithm with time O((log e)2) bit operations.

- The computation of the inverses for β1 and β2 also requires O((log e)2) bit operations.

9

2.2. EXPERIMENTAL RESULTS

- The computation of the solution of the two quadratic equations also takes O((log e)2) bit
operations.

Consequently, the time complexity of the algorithm is O((log e)2) bit operations.

2.2 Experimental Results

In this section we will present two examples that correspond to each case of Theorem 1, in order
to showcase the algorithm. The results were found using the accompanying executable program
for the chosen n and e in each case. Moreover, in order for the solution to fit properly inside the
GUI (Graphical User Interface) window, the modulus n was chosen to be a 512-bits number.
The algorithm in the .nb file can give a result for much bigger n but the executable would have
to be made again in order to show the results problem.

For both examples we will choose the same 256-bits primes p and q.
Let the two primes be:

p = 89231715549040888301567357716904006861451079875545083716711784621251557817749

q = 94841300244835204089187442585337074762553173477433230632506238441913090478509

From them, we get the modulus n = pq:

n = 8462851925748316887353186642412879268852449227167956847656535454953280009008

547640419669371466111830360712994289380339818725931805704548147579114223256241

Furthermore, we calculate ϕ(n):

ϕ(n) = 84628519257483168873531866424128792688524492271679568476565354549532800090

08363567403875495373721075560410753207756335565372953491355330124515949574959984

2.2.1 Example with a small private exponent

We first remind that the algorithm works for d < n1/4/3, so we have deliberately chosen d to be
really close to this limit. More precisely, d is a 127-bit number, with

d = 101101577223889774657871293909984870399

Thus, e = d−1modϕ(n) will be a 509-bit number, with

e = 1152436361782150890907187166800501576167264328258614466586119548076748629751

301135871374190447149678670553741766562469184606063559696889377640339851021343

Therefore we will now use the algorithm to compute the factorization of n, where (n, e) and d
are, respectively, the public and private keys for an RSA scheme.

We will start by calculating a = (n+ 1)mod e, which will be

a = 395797393273260651002876474809368235681598929357655581553698618416039600749

439689320050038336064079666836801923443055526483486887826322504096735266106841

We apply the Euclidean Algorithm for r0 = e and r1 = a, and calculate the remainders. Of
them, the biggest remainder < e3/4 is rj for j = 77, with

rj = 2534243079186672382172041872828384780252325382252202791809912595828648

826583717926784144404591646608385566211929571

10

2.2. EXPERIMENTAL RESULTS

The corresponding sj and tj are

sj = −4728399016327169413932386251991932961

tj = 13767596886794657891991272522570419634

Moreover, we have µj = gcd(rj , tj) = 1 and thus, t′j = tj .

Thus we will now compute β1 = (a+ |t′j |−1)mod e along with the solutions u1 and v1 of equation

x2 − β1x+ n = 0:

β1 = 184073015793876092390754800302241081624004253352978314349218023063164648296258

u1 = 89231715549040888301567357716904006861451079875545083716711784621251557817749

v1 = 94841300244835204089187442585337074762553173477433230632506238441913090478509

For completeness, we also compute β2 = (a+(e− |t′j |)−1)mod e along with the solutions u2 and

v2 of equation x2 − β2x+ n = 0:

β2 = 7915947865465213020057529496187364713631978587153111631073972368320792014986

95305624306200579737404533371362765262106799613995461303426985130305883917424

u2 ≃ 10.69

v2 ≃ 7.91e+ 15

Therefore, we see that the solutions of the first equation are integers and are thus the primes p
and q. Note also that 8e > n and so, c = 8. Furthermore, k < e1/4/6

√
8, where

k = 13767596886794659055372183688120893440

2.2.2 Example with a (very) large private exponent

This time we just chose a d really close to n in order to showcase how the algorithm works for
(very) large exponents. More precisely, d is now a 512-bit number, with

d = 8462851925748316887353186642412879268852449227167956847656535454953280009008

363567403875495373721075560410753207756335565372953491355330124515949574959979

Thus, e = d−1modϕ(n) will be a 512-bit number, with

e = 6770281540598653509882549313930303415081959381734365478125228363962624007206

690853923100396298976860448328602566205068452298362793084264099612759659967987

Therefore we will now use the algorithm to compute the factorization of n, where (n, e) and d
are, respectively, the public and private keys for an RSA scheme.

We will start by calculating a = (n+ 1)mod e, which will be

a = 1692570385149663377470637328482575853770489845433591369531307090990656001801

856786496568975167134969912384391723175271366427569012620284047966354563288255

We apply the Euclidean Algorithm for r0 = e and r1 = a, and calculate the remainders. Of
them, the biggest remainder < e3/4 is rj for j = 3, with

rj = 736292063175504369563019201208964326496017013411913257396872092252658593185033

The corresponding sj and tj are

sj = −1

tj = 4

11

REFERENCES

Moreover, we have µj = gcd(rj , tj) = 1 and thus, t′j = tj .

Thus we will now compute β1 = (a+ |t′j |−1)mod e along with the solutions u1 and v1 of equation

x2 − β1x+ n = 0:

β1 = 33851407702993267549412746569651517075409796908671827390626141819813120036035

29499977344074241879185024466542364726538479502159710891350072869544478280252

u1 ≃ 2.5

v1 ≃ 3.3e+ 15

For completeness, we also compute β2 = (a+ (e− |t′j |)−1)mod e along with the solutions u2
and v2 of equation x2 − β2x+ n = 0:

β2 = 184073015793876092390754800302241081624004253352978314349218023063164648296258

u2 = 89231715549040888301567357716904006861451079875545083716711784621251557817749

v2 = 94841300244835204089187442585337074762553173477433230632506238441913090478509

Therefore, we see that the solutions of the second equation are integers and are thus the primes
p and q. Note also that 2e > n and so, c = 2. Furthermore, e− k < e1/4/6

√
2, where

k = 67702815405986541948396330665240439298071604163758691284828608321069647314140

76368050451440051846695078838920672804507929959035576049268577036412922101760

References

[1] Dimitrios Poulakis. An Attack on Small Private Keys of RSA Based on Euclidean Algo-
rithm. Cryptology ePrint Archive, Paper 2019/283. https://eprint.iacr.org/2019/283.
2019. url: https://eprint.iacr.org/2019/283.

[2] M.J. Wiener. “Cryptanalysis of short RSA secret exponents”. In: IEEE Transactions on
Information Theory 36.3 (1990), pp. 553–558. doi: 10.1109/18.54902.

[3] Andrej Dujella. “Continued fractions and RSA with small secret exponent”. In: CoRR
cs.CR/0402052 (2004). url: http://arxiv.org/abs/cs/0402052.

[4] Eric R. Verheul and Henk C. A. van Tilborg. “Cryptanalysis of ‘Less Short’ RSA Secret Ex-
ponents”. In: Applicable Algebra in Engineering, Communication and Computing 8 (1997),
pp. 425–435.

[5] Alexander May. “Using LLL-Reduction for Solving RSA and Factorization Problems”. In:
The LLL Algorithm. 2010.

[6] Johannes Blömer and Alexander May. “Low Secret Exponent RSA Revisited”. In: Revised
Papers from the International Conference on Cryptography and Lattices. CaLC ’01. Berlin,
Heidelberg: Springer-Verlag, 2001, pp. 4–19. isbn: 3540424881.

[7] Dan Boneh and Glenn Durfee. “Cryptanalysis of RSA with private key d less than N0.292”.
In: Information Theory, IEEE Transactions on 46 (Aug. 2000), pp. 1339–1349. doi: 10.
1109/18.850673.

[8] M. Jason Hinek. (Very) Large RSA Private Exponent Vulnerabilities. CACR Technical Re-
port 2004-01. Centre for Applied Cryptographic Research, University of Waterloo, 2004.

[9] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge: Cam-
bridge University Press, 2005. doi: 10.1017/CBO9781139165464.

12

https://eprint.iacr.org/2019/283
https://eprint.iacr.org/2019/283
https://doi.org/10.1109/18.54902
http://arxiv.org/abs/cs/0402052
https://doi.org/10.1109/18.850673
https://doi.org/10.1109/18.850673
https://doi.org/10.1017/CBO9781139165464

	Theoretical survey
	Introduction
	How it works
	Why it works
	Proof of Theorem 1
	Equivalence with Wiener's attack

	Algorithm and Implementation
	EUCLID-ATTACK algorithm
	Experimental Results
	Example with a small private exponent
	Example with a (very) large private exponent

